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VARIANCE REDUCTION FOR REGENERATIVE SIMULATIONS, I:

INTERNAL CONTROL AND STRATIFIED SAMPLING FOR QUEUES
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ABSTRACT

We discuss two methods for reducing the variance of

estimators of parameters of limiting distributions of stable

stochastic processes in simulations. The methods are discussed

in the context of the simple GI/G/l queue. Of the two methods

one, which we call an internal control variable, gives a vari-

£ ance reduction which is roughly uniform over values of the

parameters of the process and, in particular, works well for

values of p1  the traffic intensity, close to 1.
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VARIANCE REDUCTION FOR REGENERATIVE SIMULATIONS, I:

[1 INTERNAL CONTROL AND STRATIFIED SAMPLING FOR QUEUES

by

Donald L. Iglehart and Peter A. W. Lewis

1. Introduction and Summary

Simulators are frequently faced with the task of estimating

a parameter associated with the limiting distribution of a stochas-

tic process which is being simulated. A methodology based on

regenerative processes for obtaining point estimates and confidence

intervals for such parameters has recently been developed in Crane

and Iglehart (1974a,b), (1975a,b) and Iglehart (1975), (1976a,b).

In this paper we shall indicate two techniques, internal control

variables and internal stratified sampling, which might be used in

conjunction with the regenerative method for obtaining additional

variance reduction for the estimates. To illustrate these tech-

niques we shall restrict our attention in this paper to the GI/G/l

queue. Other applications of these ideas will be dealt with in

future publications, as well as uses of the regenerative property

which may possibly be more suited for obtaining variance reduction

for estimates in stable stochastic processes.

In the GI/G/l queue we assume the zeroth customer arrives

at time to=0, finds a free server, and experiences a service

time v0 . The n -h  customer arrives at time tn and experiences
a service time v. Let the interarrival times t - t = Un

n- l. Assume the two sequences {v n 0} and {u n } each
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consist of independent, identically distributed (i.i.d.) random

variables (r.v.'s) and are themselves independent. Let E{vn }n
P -1, E{Un } = X-i, and p = X/p, where 0 < X,l <- . Thus p has

th e interpretation of the mean service rate and X has the inter-

pretation ofthe mean interarrival rate. The parameter p is

called the traffic intensity and is the natural measure of conges-
I tion for this system. We shall assume that p < 1, a necessary

I and sufficient condition for the system to be stable.

While many characteristics of interest can be estimated

using the regenerative method, we shall restrict our attention to

the waiting time of the n- customer, W (time from arrival to

commencement of service). To obtain a representation for the pro-1 cess {W n_ 0} let Xn =vnI - un and set S0 = 0, S n = Xl +...+x n,

n- 1. The following well-known recursive relationship exists for

the W 's:I n

W 0 0,W n Wn+Xn+l tO

By induction, we also have

W = max{S -S k: k= 0,1,...,n}, n_ 0.

Using the strong Markov property of the process {S : n_01

it can be shown that there exists a sequence of integer-valued r.v.'s

{6 k 0} such that a0 = 0, ak < k+1, and W k= 0 with proba-

bility one. In other words, the customers numbered 8k are those

lucky fellows who arrive to find a free server and experience no wait-

ing in the queue. The fact that there exists an infinite number of

such customers in the GI/G/l queue is a direct consequence of the
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assumption that p < 1 and the strong law of large numbers. If

K we let a k= ak- k I  k 1i, then ak represents the number of

customers served in the kth  busy period (b.p.) and they are

numbered {O klakl+1,..., k-11.

Next define the sequence {Yk: k -i} by

J k-1

the sum of the waiting times in the k-h  b.p. Since the queue

is stable for p <1 we have Wn W as n -, where - denotes

weak convergence.

Our goal is to estimate E{W} by simulation.
SIt is known that EMW <- if and only if E{(XI+)2} <. We

shall, for simplicity, assume that E{v 2 } <_ which will guarantee

0

* that E{W}<. The regenerative simulation method is based on the

analytic results that the sequence {(Yk,ak): k_ 1} is independent and

L identically distributed and E{W} =E{Y1 }/E{aI}, the ratio of two

means. This suggests using the ratio of estimates of E(YI) and

E(a) to estimate E(W). Thus, if we let Y(n) 1 Y and
1 n k=l

3(n) nkl ak' where n now denotes the number of cycles observed,

then a ratio estimate of E(W), for example, is

L W(n) = Y(n)/t(n). (1.1)

a(In the sequel we drop the dependence on n unless necessary.)

U Now let Zk = Yk- E{W}ak' ki 1, and note that the sequence

{Zk: k 1} is i.i.d. and E{Zk } = 0. We assume the variance of Zk,

*! ,
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E{Z} = 2 = var{Yk } -2 cov{Yk, k}E{W} +var{ak}E
2 {W} (1.2)

I
is finite and positive. Then one can easily show that as n-

nI / 2 [Y(n)/_ (n)-E{W}J N(0,1), (1.3)
c/Elal ,

where N(O,1) is a mean zero, variance one normal random variable.

I This result yields a confidence interval for E{W} provided we

i can estimate c/E{aI}. A variety of estimates have been studied

and are reported on in Iglehart (1975a). Here we just mention two.

The so-called classical estimate for a/E{t I} is given by

2 21/2I 1 = [S11 - 2S1 2(Y/&) +S22( YI/) ]I /a,

where SII is the sample variance of the Yk'S, $22 of the ak 's,

and S12 the sample covariance of the Y k's and ak's.

I The second estimate of a/E{a I} is the jackknife estimate

which is defined to be

^ n 2/ 1/2S2 = i 1

I -1 nwhere Ki=n(Y/) - (n-l)( I Y./ ai), l_5in, and 1n i

1 .i j4. A i 1
is called the jackknifed estimator of E(W). Both S1 and S2

are strongly consistent.

.1 The jackknifing technique is known to work particularly

well as a confidence interval estimate for ratios; for a large

number of cycles n the computational problem is severe, but in

that case the technique using (1.3) and S1 works well. For

details see Miller (1974) and Iglehart (1975).

1 4



I

The problem addressed in this paper is how to apply variance

Ireduction techniques with the ratio estimator W(n). In almost

all practical situations, where in particular one might want to

compare the mean waiting times of two different queueing systems

(Iglehart (1976)), there is a premium on achieving the minimum

possible variance for the estimation in the given computing time

(number of cycles allowed). Variance reduction techniques for

simulations are discussed in Kleijnen (1974) and Gaver and Thompson

I 1 (1973), but there are difficulties in applying these to ratio

estimates and regenerative systems. In particular variance reduc-

tion via the usual control variable techniques is difficult. A

variation of this technique, which we call internal control variables

and which is generally useful for ratio estimates, is introduced

Land shown to give considerable variance reduction for the point esti-

mate W(n). Another technique, internal stratified sampling, is also

explored. It is a natural technique to use but appears to be diffi-

[ 1cult to use with ratios. moreover, it becomes less and less

effective as p 1i, while the internal control technique holds up

well for p close to 1. In fact the internal control variables

described here for an M/M/l queue give a variance reduction which

is fairly uniform for all values of p and ratios p < 1. Better

results can be obtained for particular cases of the parameter p.

It will also be apparent after the development of the vari-

[ance reduction techniques in the next sections that the two tech-
niques for confidence interval estimates discussed above apply to

the estimates after variance reduction has been applied.

15
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S2. Internal Control

w or main methods for variance reduction, antithetic variates

and control variables (Gaver and Thompson (1973)) have been put

forward for use with queues in the non-regenerative situation. Of

these, antithetics has very limited utility beyond the simple M/M/l

situation in which it is patently clear how to generate two reali-

zations of samples which give negatively correlated estimates.

That scheme for generating negatively correlated estimates does

not work with the regenerative method because the regenerative

blocks in the original realization of the queue and the antithetic

realization get out of synchronization. No alternative way has

been found to utilize antithetic variates with the regenerative

technique and we feel, along with many computer scientists, that

the technique has limited validity in systems simulation.

The technique of using a control variable and, in particular,

a regression-adjusted control variable (Gaver and Thompson (1973)

p. 587) is much more broadly applicable in systems simulation,

although it is again difficult to adapt to the regenerative situa-

tion. Briefly, say we are simulating an M/G/l queue to estimate

E(W) with the non-regenerative technique of averaging the first

m waiting times to obtain an estimate of the unknown E(W),

1 mw =- I W.. (2.1)
mm j=l 3

The same random numbers used to generate the m non-exponentially

distributed service times are used to generate m exponential

service times for simulating an M/M/l queue whose input stream

6
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! is identical to that of the simulated M/G/I queue. One would

K "then expect that if the G-distribution is not too different from

the exponential distribution, successive waiting times, say W'

in the M/M/l queue realization would be close to (positively

correlated with) the corresponding waiting times W. in the)

M/G/l queue. Consequently, the average of the Ws, say W'

will be positively correlated with W and one can form a newm

estimate

W = W + 8(Wm-E(W')). (2.2)
mm m m

Now E(W m) is close to E{W'}= p/i(l-p) for m large, so
m

E(W m) E(W ) and the variance of the new estimate will be a minimum

if

i -cov(Wm,W )/var(W'); (2.3)

in fact

oW s.d. (Wm 1/
m _ (1-r 2 ) 1/ (2.4)

Wm  s.d. (Wm

where

~cov(W m'
r = corr(Wm,'W m ) = a m ' 25

m m

There are a number of important points to be noted about

, this technique :

()It allows one to use known analytical results (such as

1 the expected value of the limiting waiting time in an

i7

&

44



M/M/l queue) to reduce the variance of a simulation.

i Such use of analytical results is a basic principle of

Ii simulation.

(ii) It can be extended to non-linear controls or to multiple

control by more than one control variable.

(iii) The great art in the technique lies in finding a control

K I whose mean value is known and which is highly correlated

with the estimator which is being controlled. Thus (2.4)

says that Irl must be close to 0.9 to reduce the stand-

ard deviation a-m to one half of o and this
m mgenerally is equivalent to reducing the required sample

I size for a given precision by a quarter. Controls which

are that highly correlated with the estimate are not

easy to find.

I (iv) It is in general too much to ask that the correlation and

variances in (2.3), (2.4), and (2.5) be known analyti-

cally. They, therefore, must be estimated from the

simulation data and this will reduce the variance reduc-

~ I tion which is attained.

I Now using this method to control the regenerative estimate

given in the introduction,I
W(n) =SI

where n refers to a fixed number of cycles in the queue, one runs

into the same problem of synchronization as with the antithetic

case, namely n cycles in the M/G/l queue may take a very different

8



number of waiting times to achieve than are needed for n cycles

in the M/M/l queue. Moreover, the correlation between Y and
Y will be weak and made even weaker by the use of the ratio
k

estimate. This problem becomes rapidly apparent in simulation

studies of the technique.

The following technique which we have called internal

(within block) control has been developed to overcome this. It

is, in fact, a special case of the very broad technique called

concomitant variables in Gaver and Thompson (1973), p. 588 and

will be illustrated only for point estimation of E(W) and E(O.).

* jIts extension to other quantities discussed by Crane and Iglehart

(1974a) is immediate in principle, although the control quantities

discussed below may be different.

2.1 Internal Control: Basic Ideas

The idea of an internal control variable is simple. In the

estimate W(n) , the averages Y(n) and a(n) contain n random

variables Y k and ak which are each functions only of the k

interarrival and service times occurring in the k- cycle (or b.p.)

and are independent of the other interarrival times and service times.

Thus, it is natural to use some function of these 2a random
k

variables to control each Yk and k"

The naive application of this idea is that if we can reduce

the variance of both the numerator and denominator Y(n) and a(n)

we will reduce the variance of W(n), but we will show that the

situation is more complex than this. We will denote a function of

the random variables in the kth  cycle by C(k) but will generally

9



drop the index. In general we also use C (k) to denote a control
T

for the numerator (t 2) in the ratio estimator and CB(k) to

denote a control for the denominator (bottom).

Typically, C(k), or simply C, could be the difference

between the service time v and the time to arrival of the next

customer from the arrival of the akth customer, namely

This difference has, in a GI/G/l queue, a known mean

1. - and large positive values of this function C(k) corre-

spond to large values of Yk and ak, and vice versa. We return

to specific control variables and their computation in the next

j i sub-section.

Note that one can control either the top or bottom of the

ratio estimator, or both; to fix ideas assume we control the top

and have, in general, an internally controlled estimate

1 n
I {Yk+ (C -E(C )) }

W CT(n) = , (2.6)

where 8T, as in the usual control estimation technique, is fixed

so as to minimize var(WCT(n)). In practice it is usually esti-

mated from the simulation data.

A .. Now the quantity a2/E2{oie, where a2 =E{Z} is given at

(1.2), is just the leading term in the asymptotic expansion for the

variance of the ratio estimator W(n), and carries over to the

more complicated situation (2.6) to give (asymptotically as n- -)

2

n var(WCT(n)) aT = IfE-) {var(Yl+aTC a')

2

= E(Y) var{(Y'-x') + 8TC 1  (2.7)=ET T

J 10
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where Y' =Y/E{Y}, a' =ct/E{a}, and C'= C/E{Y}. For a
~. T T

derivation of this result see Cramdr (1946), p. 354, eq. (27.7.3).

It follows from (2.7), as before, that to minimize the

asymptotic variance of W CT(n) we must take

cov(Y'-aY',C) cov(YCT) E(Y) cov(acCT) (2.8)

-ST var(C%) = var(CT) -EF var(CT)

But most importantly we notice that % must be highly correlated

with the difference Y' - a'. To achieve this is much more difficult

than finding a quantity which is highly correlated with either of

Y or a, simply because Y and a are highly correlated and

increase together. In particular if a= 1, which has a high

probability if p, the traffic intensity is small, then Y= 0.

Note, too, that E(W) =E(Y)/E(a), the quantity we are trying

to estimate in the simulation, appears in (2.8) for the top control

regression coefficient. Also similar equations to (2.7) and (2.8)

pertain to the case where the bottom of the ratio is controlled

(in this case a), and simultaneous equations can be derived for

BT  and 8B  if both top and bottom are controlled. The additional

complexity in estimating aT  and SB  does not seem to be justi-

fied by simulation results (discussed later) which also show that

if only one control is used there seems little to choose in terms

of reduction achieved between putting it on the top of the bottom.

In both cases the control must be highly correlated with the

difference between Y and a.

11
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The above results are generally applicable for any regenerative

process in which ratio estimates are used. The choice of C is,

r of course, the art in the design of a simulation with variance

reduction and is considered for the GI/G/l and specifically the

M/M/l queue in the next section. In all cases this choice is

limited by one's ability to compute analytically E(C).F
2.2 Internal Control: Design Considerations

We discuss here the design of internal controls for the

.- M/M/l queue, the ideas being applicable to the GI/G/l case with

the proviso that the computations might be considerably more diffi-

cult. Simple computations of E(C) are given here and more diffi-

cult ones in the Appendix; we do not distinguish between bottom

and top controls, since both must be correlated with the difference

Y- a, and we drop consideration of cycle number, since all variables

are within the cycles which have identical structure.

Again, we are considering estimation of E(W), but of the

F many possible controls, those listed below would probably work as

well with other functions of W, e.g. percentiles. The controls

are listed roughly in order of complexity of computation and of

supposed correlation with Y- a. Thi:3 can usually only be guessed

F" at and generally the more elaborate controls which might haveI.
greater correlation with Y- a are more difficult computationally.

Superscripts on C are labels to differentiate the controls.

We have discussed above the difference X = v0 - Ulf whose moments

4. are simple to compute. Then we have

- 12
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C = X= W = 0 if a = 1 (2.9)[ 1 1

= X if a _ 2. (2.10)

It is easy to compute E(C 11 ) for M/G/1 queues and

possible for the GI/G/I queue. Thus, for the M/M/1 case we

have, using the Markov property of the exponential distribution,

SPlvo<u I = P{a=l} = [l-FulY)]dFv(Y)

= JfXY(Pe-"Y)dy - 1 (2.11)

which goes from 1 to 1/2 as p= X/p goes from 0 to 1; furthermore,
K.

P{> 21 = 1  l p (2.12)
l+p l+p

Now given that X1 = v0 -u 1  is greater than zero, the1.
excess v 0 - u is distributed as an exponential random variable

with parameter P. Therefore

*( )E(X ) = E(C (I )) =0x- + = (2.13)*1 E(+X Vl(2.13)
.q

The variance of C ( ) can also be computed.

One would generally like to obtain more correlation of C

I and Y-a when Y is large, and one feels this can be done by

bringing in the second waiting time. Thus we have as control

I. candidates

13
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r i ! ,... ......
- (2) =0, if a (1I + + (2.14)

1+ X+ if a 2;= X1 + 2

C (3 )  (X++X 2  = W2; (2.15)

1 0, if a= 1
C ( + + (2.16)

X + X++Xif a 2.: 1  1

The control C is W0 =0 if a= l, it is W +W if
00 1' I +

a= 2, and it is W0 +W + x  if a_ 3. It is an attempt to capture

the effect of the first two waiting times without the additional

computational complexities involved in computing the expectations

of C (3 )  and C

&(3)(4Simulation results show that C and C give very

little more control than C (2 )  for which, in the M/M/l case,

we have

E(C (2 )) = 0 +E(X+X2, >2)

SI{E(XI+X2 1 X1 > 0}

l-P 1p2 1

I. = !+E(X+ X+>0

I +i+ E (Xid) P (2.17)

using (2.12) and the fact that X2  XI . We use

the notation E{X,A} for E{XI A, where X is a random variable,

A an event, and 1 the indicator function of A.

Similar computations go through for C and C4); from

these we will need later the following illustrative result (M/M/I

case).

14
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ii
Pfa=21 = P{X+>O,Xl+vl5u2 1

= P{XI>0,v -u +v _2}

-{P (u2 _Y} = • 1 (2.18)

l+p (i+X) z (+P)3'

where Y, the sum of two exponential(p) random variables, has

a Gamma(V,2) distribution.

From this we also get that

P {Wt31 = 1 -1 p = p2 (2+P) (2.19)
lp(1+p)3 - (l+p) (2.19

Now, none of these four controls is specifically designed

to be correlated with the difference Y- a. As a result they work

well for p and X such that Y takes on values much larger

than a.

To fix this one might try

C ( Ci -a, i = 1,2,3 or 4, (2.20)

since the mean E(C (5 )) is easily calculated if E(C(i)) is

known for i = 1,2,3, or 4, and E(a) is known. But E() is

l/(l-p) for any M/G/l queue (Cohen, 1969); approximations for

the GI/M/l case are discussed in the Appendix.

There is an additional problem of dimensional stability

involved in using C , as with C (I ) , C C ( ), C in that

E(c(i)) depends on both V and p, while E() depends only on

p. Thus control is not uniform across the whole range of param-

Ii 1eter values.

i [ 15



To avoid this one use

C( 6 ) = C - c/p. (2.21)

This, with i =2, was found, in simulation studies, to be

the most successful control variable in that it obtained a variance

reduction which was uniform in p and p (or p and A) and its

mean value is fairly simple to compute. These simulation results

are discussed in the next subsection.

Note that multiple control variables using any of the above

controls can be used. In particular, one need not take the differ-

ence of say, C (2 ) and a/p, but may use a multiple control.

However, the fact that two regression coefficients, say 41)

and (2) must be estimated from the simulation data makes theT

possible gain in variance reduction of dubious value.

Note also that since all the control comes from within

cycles, there is no reason that the confidence interval estimation

iques referred to in the introduction would not go through

for t.'e variance-reduced estimates. This has been verified in

* jsimulation runs.

2.3 Internal Control: Simulation Results

It is not possible to verify analytically what variance

reduction will be obtained via the several internal controls

listed in the previous section, or to get an idea of the magnitude

of the effect. Even for something as simple as C(1) it is diffi-

C(1)cult to compute analytically the correlation between C and

Y-a for the M/M/l queue, and this is what is required in the

equation (2.5) to find the variance reduction.

16
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J Thus, we resorted to simulations to verify the amount of

variance reduction obtained and the relative effectiveness of the

Ia [various controls. In the final simulations all runs were performed

on IBM System 360/67 computer using the LLRANDOM package (Learmonth

and Lewis (1973)) which generates random numbers according to the

scheme given by Lewis, Goodman, and Miller (1969) and exponentially

distributed random numbers using the Marsaglia "rectangle-wedge-

[ tail" method. Tests of the random number generator are given in

Learmonth and Lewis (1974).

Of the extensive simulation checks performed, we give here

only a summary of the conclusions and one detailed tabulation and

one short tabulation in the case of the most suitable control.

(1) The controls C C ( ) and C do much better gener-

ally than C with little improvement over C obtained

by use of C and C We say generally because results

vary with X and U and their ratio p.

1 (2) Subtracting the number of customers served in a busy

period generally improves the variance reduction. By making

it dimensionally stable as in (2.21) with i=2 we obtain a

"variance reduction" measured in terms of ratios of standard

deviations, of approximately 70%, uniformly over X and i.

1 L This is roughly equivalent to halving the number of cycles (b.p.'s)

that one must simulate; (0.7)2 .5. Much better reductions can

be obtained for smaller p (i.e. p= 0.25) by specially designed

r controls; the point is that C(6) using C works even out

at p =0.99, where variance reduction is extremely important.

" 17
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Table 1 shows results obtained by simulating an M/M/l queue

SV- out to n= 2000 cycles and replicating the simulation 250 times to

estimate the variance of the estimates W(n), WCT(n), WCB(n),

where we drop the n for convenience. Here, we have specifi-

cally that

1 n
n k

WCB (n) =
1 n+ ( C (6) E IC (6) 1)

k=l

where

C ( 6 )  = C (2) - /P. (2.22)

The estimated precision (standard deviations) of the estimates of

E(W) are given in brackets under the estimates.

The results in Table 1 are for p=0.5 and three values of

p; the results are not very different at different values of p. The

case p= 0.99 is given in Table 2. The second, third and fourth

columns in the Tables give correlations between the control and

Y- a etc., from which the theoretical variance reduction can be

computed. They are very close to the values given in the next

to last column, from which we deduce that estimating aT and 8B

affects the variance reduction only slightly. There is negligible

effect of different values of p for fixed p= 0.5 and fixed

p=0.99.

Note that for the results for p = 0.99 given in Table 2, the

variance reduction is 73% (about the same as for p= 0.5). For the

18
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2
I case where the control is on the top, i.e. for Y, the variance

reduction is not quite as good for control of a. Note too that

the estimated values appear in some cases to be at least three or

four standard deviations from the true mean. This is because the

estimates W, WT  and WB  can be seen from the 100 replications

to be non-normal. In other words, for high p(O.99), the simula-

tion needs to be taken out further than 2000 cycles.

I1

L.
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3. Internal Stratified Sampling

Another technique for variance reduction which can be

potentially used with the regenerative method is stratified sampling.

For a brief description see Kleijnen (1974), p. 110. In essence

this uses analytical information in the following way.

If we can stratify or partition a random variable X by

its values (or those of a concomitant variable) into K strata

labeled k= 1,2,...,K, we can write the mean of X and the sample

mean X as, respectively,

K
= E(X) = [ PkE (X Xe strata k) ; (3.1)

k=l

X. 1i = x.+ + + x (3.2)
n i=l 1 nstr 1 i str Ki)

I _ n--L 1n + "" +  I n K 1 (3.3)
str 1 1 str K (3.3)

where nk = number of Xi's observed in strata, and Pk is the

probability of being in strata.
jl

Now, if the pk s are known and we substitute them in (3.3)

for nk/n, we get Xst'a stratified estimate. It will be biased,

since the divisions of the sums in the populations are random; if

the numbers observed in each population are controlled and taken

to be npl,np2 , etc., we have what is called a proportionally

sampled estimate X with
PS

p K
var(X) = var() - k/n, (3.4)~k=l
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where p k E{X JXF strata k}. Thus, because of the use of prior

analytic information we always get variance reduction.

The variance of Xst is not analytically tractable, but

early studies reported in Kleijnen indicate it is close to (3.4)

if n and all the nk's are sufficiently large. Our simulation

studies with stratifying a have confirmed this; because of the ease

of computation of P{a=l},P{[x=2},P{1(x3}, as in section 2.3, it 1 s

natural to stratify a. Considerable variance reduction is obtained,

especially for smaller values of p, the traffic intensity.

Unfortunately, when the quantity a is stratified in the

bottom (denominator) of the estimator W(n) very little overall

variance reduction is obtained unless p is small. We do not
understand this lack of variance reduction but apparently the

correlation between the stratified version of a(n) and Y(n)

is reduced. Analytical studies of this effect are very difficult.

It is also possible to use a stratified estimate of a

in W(n) and to control the top, Y(n), with say C (6) using

(2)SC (2  This works well for small p, but increases the variance

as p approaches 1. Again it is difficult to understand this

effect.

23

4



4. Conclusions and Summary

We have been able to obtain a worthwhile variance reduction

using internal control variables, for the regenerative estimate of

the limiting value of the mean waiting time in an M/M/l queue.

This reduction is obtained uniformly over all parameter values.

It is fairly certain that the technique will work well with any

GI/G/l queue or other regenerative stochastic processes or systems.

Internal stratified sampling schemes, however, did not work nearly

as well.

The techniques can be extended to other stable stochastic

systems, such as the Markov chains considered in Crane and Iglehart

(1974b). In that case the computation of the mean values of the

controls is simpler because of the structure of the Markov chain.

The main problem in applying the internal control variance

reduction technique seems to lie in the fact that the estimator

proposed by Crane and Iglehart (1974a) involves a ratio of two

random variables, and these are difficult to work with in general.

An alternative which will be considered later is to use the

existence of regeneration points more specifically to obtain vari-

ance reduction with the classical estimator W given at (2.1).
m

One advantage which the regenerative estimator W(n) has over

Wm is the ease of obtaining confidence interval estimates or esti-

mates of the precision of W(n) and 4(n). This is not a draw-

back if the simulation is large and more than one (say ten or

twenty) realizations of the queue are obtained.

To fix ideas note that we can write W as

24
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m
m m =0

j=0

N M) Y +

k-i k N(m)+l'

where N(m) is the number of completed busy periods in the queue

in [O,m], Yk as before is the sum of the waiting times in the

kt  cycle, and Ym the sum of the waiting times in the last,

incomplete cycle.

Now it is possible to apply internal controls to each Yk

in the sum. Problems arise in estimating the coefficients 8 in

4 Jthe control because they involve a random sum of random variables.

But it is much easier to find a control C for Yk rather than

the difference Y k- (1k" and also it is still possible to apply

external controls as well as internal controls.

These ideas will be followed up in a later paper.
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APPENDIX

To implement either the internal control or stratified

sampling techniques certain theoretical parameters associated

with the GI/G/l queue are required. In this appendix we shall

indicate the values of these parameters in so far as they can be

calculated. These values are either well-known or easily calcu-

lated. For a reference to the known formulas see Cohen (1969).

We begin with E{a 1}, the expected number of customers

served in a busy period. For the general GI/G/l queue recall

that we let X =v -u and S =X 1 + ... +X , for n_ i1,thtw e n  in n 1 n

with S =0. Then a inf{n>0: Sn -01. The general expression

" for E{a i} is given by

E{ l }  exp{ I n-i1p[S n>0]1 ,

n=l

an impossible expression to evaluate in general. Another useful
expression for E{a I is

E{aI = l/P{W=0}, (A.1)

where W is the stationary waiting time. In the special case of

M/G/l, however, we have

E{a1I = (l+p)-

Now for the qucie GI/M/I we can use (A.1) and the stationary

distribution of the embedded Markov chain to conclude that

E{ctI } = (i-6)-I,
Ef
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where 6 is the root inside the unit circle of

z-U{P(l-z)} = 0

with U(s) E{e }, Re s_0, and u1  is an exponential (p)

r.v. It is easy to check that 6= p for M/M/l queues. Daley (1975)

has recently proposed the approximation to 6 given by

= a (1-p) 2 + 2(1-b - 1 )+ (2b-l-l)p2,
s1

where a p uu l= 0 } , Eu I 
= 1, and b=E{u}. This approximation

gives good results in a number of examples calculated by Daley (1975)

and may be useful for the purposes of this paper.

Next we turn to the computation of P{a =1} and P{a =2}.

For the GI/G/1 case we have

P{al=l} = P{S l_0}

and

P{al=2} = P{SI>0,S2 -0},

both of which can be worked out with a little effort. For the M/M/l

queue -1
P{ ll} = (l+p)

and

-3P{cl=2} = p(l+p)

For the M/G/l queue

P{al} = V(M)

where V(X) = E(e ), and for the GI/M/l queue

27



Pfa 11 =l l-U (1),

whee ~s) isgien boe. For the M/ 1queue and the E /M/l

queue the value Pfa 1 =2} can be calculated with some effort. AS

-- these expressions are cumbersome they shall be omitted.

* L Next we turn to various partial expectations which are

needed for internal control

E{St+S+,a >-2} =E{S 1 1S >1O+ EIS ,S >0}

andI)E{atlra 1 i2 Efc1t }-P{a 1=11.

In the special case of the M/M/l queue,

E{S1 ,S1 >O} =/Plpl

2 -l2
E{S+,S >0} =[2(.)+ l)

and

* Ellc1 1 2} 2p/{(1-P) (1+ip).
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